Discretisation of continuous-time dynamic multi-input multi-output systems with non-uniform delays
نویسنده
چکیده
Input and output time delays in continuous-time (CT) dynamic systems impact such systems differently as their effects are encountered before and after the state dynamics. Given a fixed sampling time, input and output signals in multiple-input multiple-output (MIMO) systems may exhibit any combination of the following four cases: no delays, integer-multiple delays, fractional delays and integer-multiple plus fractional delays. A common pitfall in the digital control of delayed systems literature is to only consider the system timing diagram to derive the discrete-time (DT) equivalent model; hence, effectively ‘lump’ the delays across the system as one total delay. DT equivalent models for systems with input delays are radically different than those with output delays. Existing discretisation techniques for delayed systems usually consider the delays to be integer-multiples of the sampling time. This study is intended to serve as a reference for systematically deriving DT equivalent models of MIMO systems exhibiting any combination of the four delay cases. This algorithm is applied towards discretising an MIMO heat exchanger process with non-uniform input and output delays. A significant improvement towards the CT response was noted when applying this algorithm as opposed to rounding the delays to the closest integer-multiple of the sampling time.
منابع مشابه
Design On-Line Tunable Gain Artificial Nonlinear Controller
One of the most important challenges in nonlinear, multi-input multi-output (MIMO) and time variant systems (e.g., robot manipulator) is designing a controller with acceptable performance. This paper focused on design a new artificial non linear controller with on line tunable gain applied in the robot manipulator. The sliding mode fuzzy controller (SMFC) was designed as 7 rules Mamdani’s infer...
متن کاملDesign On-Line Tunable Gain Artificial Nonlinear Controller
One of the most important challenges in nonlinear, multi-input multi-output (MIMO) and time variant systems (e.g., robot manipulator) is designing a controller with acceptable performance. This paper focused on design a new artificial non linear controller with on line tunable gain applied in the robot manipulator. The sliding mode fuzzy controller (SMFC) was designed as 7 rules Mamdani’s infer...
متن کاملRobust Adaptive Actuator Failure Compensation of MIMO Systems with Unknown State Delays
In this paper, a robust adaptive actuator failure compensation control scheme is proposed for a class of multi input multi output linear systems with unknown time-varying state delay and in the presence of unknown actuator failures and external disturbance. The adaptive controller structure is designed based on the SPR-Lyapunov approach to achieve the control objective under the specific assump...
متن کاملEigenvalue Assignment Of Discrete-Time Linear Systems With State And Input Time-Delays
Time-delays are important components of many dynamical systems that describe coupling or interconnection between dynamics, propagation or transport phenomena, and heredity and competition in population dynamics. The stabilization with time delay in observation or control represents difficult mathematical challenges in the control of distributed parameter systems. It is well-known that the stabi...
متن کاملRejection of the Feed-Flow Disturbances in a Multi-Component Distillation Column Using a Multiple Neural Network Model-Predictive Controller
This article deals with the issues associated with developing a new design methodology for the nonlinear model-predictive control (MPC) of a chemical plant. A combination of multiple neural networks is selected and used to model a nonlinear multi-input multi-output (MIMO) process with time delays. An optimization procedure for a neural MPC algorithm based on this model is then developed. T...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011